
Distributed Caching Platforms

Anil Nori
anilnori@microsoft.com

September 14, 2010
VLDB 2010

Typical Web Applications

… Web Tier
(ASP.Net)

Users

Database

Data Tier

 Application Application
 Application

 Cache app data

Out of proc Session State
Server

 Cache app data
Session data

Database is

hot

What is "Distributed Caching"?

• An explicit, distributed, in-memory application cache for all kinds
of data (Java/.Net objects, rows, XML, Binary data etc.)

– Fuse "memory" across machines into a unified cache

Unified Cache View

Clients can be
spread across
machines or

processes

Clients Access
the Cache as if it

was a large
single cache

Cache Layer
distributes data

across the
various cache

nodes

Where does it fit?

… Web Tier
(ASP.Net)

Users

Database Cloud
Data Tier

 Application Application Application
Caching Access

Layer
Caching Access

Layer
Caching Access

Layer

C
ac

h
in

g
Se

rv
ic

e

C
ac

h
in

g
Se

rv
ic

e

C
ac

h
in

g
Se

rv
ic

e

Cache Tier

Distributed Cache Usage

Commonalities: Extreme transaction volume, store for transient processing

H
o

ri
zo

n
ta

l
V

e
rt

ic
al

s

Scenario

Web

• User-specific HTTP session and shared state across web farm

• In-flight shopping carts for web retail

• Enabling online self-service applications

• Explicit storage of pre-computed or highly-accessed data

LOB
• Enterprise-wide product catalog for POS, analytics

• Caching frequently used reference data for a ERP application

Telco
• Cellular/VOIP: compute utilization, prepay charges, call routing and session info

• SMS: message content / notification / receipt, billing

Travel • Aggregated flight pricing / availability retrieved from airlines

Defense • Sensor network data processing and threat detection

Financial
• Per-user portfolio data and delayed quote storage for trading

• Aggregate and process ticker stream for algorithmic trading

Types of Application Data

Reference Activity Resource

Primary Read Only Read-Write Not shared Read-Write, Shared

Catalog Data Shopping Cart Auction Data/Seat
Assignment

 Web/App Tier

Distributed Cache

 Shopping Cart

 Grocery Catalog

 Grocery Inventory

Grocery Shop

• A version of the authoritative data

– Aggregated or transformed

• Each version is unique
• Refreshed periodically

• Examples
– Web and Enterprise (Product)

Catalogs

– User, Employee data

• Access pattern
– Mostly read

– Shared & Concurrent Access

• Scale
– Large number of accesses

• Functionality
– Key based Access

– Simple Query & Filtering

– Loading

 Caching Reference Data

Web Tier

Clients

Local Cache

(in Proc)

Distributed Cache
Servers

Data Tier

 Usernames,
 Name-> ID
 Mapping

 Friend Lists
 Usernames

Scenario: Social Networking

• Data typically generated as part of the

application activity
• Active during business transactions

– Typically logged to a backend data

source

– Historical data

• Examples

– Shopping Cart

– Session State

– Enterprise LOB app (Purchase Order)

• Access pattern
– Read and write

– Primarily exclusive access

• Scale
– High data (and access) scale

• Functionality

– Key based access

– Transactions (Grouping)

 Caching Activity-oriented Data

Data Tier

Mid Tier

Rich Clients

Distributed Cache

Integration
Hub

Thin Clients

Web Tier

Vendor
services,
Pricing

Vendor
Sources

 Order,
Invoice,

Payment

External Systems…

 Aggregated
 Vendor
 Catalogs

Scenario: Enterprise LOB Application

 Caching Resource-oriented Data

• Authoritative data

• Modified by transactions; spans

transactions

• Examples

– Flight Inventory

• Access pattern:

– Read and write

– Shared access

• Functionality

– Key based access

– Transactions

• Scale

– Large number of concurrent accesses

– Relaxed consistency for scale

Scenario: Flight Inventory and Pricing

App Logic

Continent
al

America
n

United

Distributed Cache

 Flight
 Routing
 Itinerary

Flight Segment
 Flight Price

A
ir

lin
es

 Inventory

Booking Service

http://images.google.com/imgres?imgurl=http://www.planebuzz.com/united_logo1.JPG&imgrefurl=http://www.planebuzz.com/2006/09/united_pilots_fallout_from_the.html&h=446&w=496&sz=19&hl=en&start=1&sig2=xoROdkuK4X_uPOW8vkHzDA&um=1&tbnid=eDQBBS4EyuSe0M:&tbnh=117&tbnw=130&ei=Ht6XRtvHJIOqiwHMs7XbBw&prev=/images?q=united+airlines&svnum=10&um=1&hl=en&rls=com.microsoft:*:IE-SearchBox
http://images.google.com/imgres?imgurl=http://blog.travelpost.com/wp-content/AmericanAirlinesLogo.JPG&imgrefurl=http://blog.travelpost.com/category/deals-and-promos/page/2/&h=230&w=248&sz=38&hl=en&start=2&sig2=rcwxwr_SKquBiFzeS7H7gg&um=1&tbnid=AHlLTSHJp9_OIM:&tbnh=103&tbnw=111&ei=L96XRpalJa_wiwGVu5H3Bw&prev=/images?q=american+airlines&svnum=10&um=1&hl=en&rls=com.microsoft:*:IE-SearchBox

• A version of the authoritative data

– Aggregated or transformed

• Several TBs on 100s of Memcached
Servers

• Examples
– User data, friend data, pictures

• Most accesses hit the cache

• Access pattern
– Mostly read

– Shared & Concurrent Access

• Scale
– Large number of accesses

• Functionality

– Key based Access

– Simple query/Filtering

 The Facebook Scenario

Web Tier

Clients

Local Cache

(in Proc)

Distributed Cache
Servers

Data Tier

 Usernames,
 Name-> ID
 Mapping

 Friend Lists
 Usernames

Scenario: Social Networking

Extreme Transaction Processing

• Traditional TP monitors

• Enterprise Application Servers

• Traditional Integration Brokers

• Message Servers

• Event Driven Messaging

• Enterprise/Internet Service Bus

• Grid/Fabric based Application Servers

• Low latency platform

• Distributed TP applications with exceptionally
demanding performance, scalability, availability

• Real-time, business critical, secure, and
manageable

Grid/Fabric based Application Servers

… Application
Components

Application Server Application Server Application Server

 Application
Components

 Application
Components

Distributed Caching Platform

Application
State

Application
State

Application
State

Application
State

Application
State

• Integrated distributed caching
platform

• Application State
Management

• Partitioned and Replicated
application state

• Co-located logic and state

• Data aware routing

• Extreme low latency
routing and access

• Durability and Persistence

Next generation applications – distributed, loosely-coupled, even-driven

requiring high scale, performance and availability.

Evolving
Application

Requirements

Underlying
Hardware

Trends

Evolving
Application

Architectures

Evolving
Business

Requirements

Application Requirements
• Efficient (Application) State management
• Performance

– Millisecond/microsecond access

– 100s of 1000s of accesses

• Scale
– 10s – 100s of nodes in enterprise

– 100s – 1000s in cloud applications

• Availability
– Always available

• Consistency
– Different degrees: Strong, Weak, Eventual, . . .

• Access
– Key based and simple query based access

– Transactions, Optimistic concurrency control

– Invalidations

Caching API

// Create instance of cachefactory (reads appconfig)
DataCacheFactory fac = new DataCacheFactory();

// Get a named cache from the factory
DataCache catalog = fac.GetCache("catalogcache");

// Simple Get/Put
catalog.Put("toy-101", new Toy("Puzzle", .,.));

// From the same or a different client
Toy toyObj = (Toy)catalog.Get("toy-101");

// Region based Get/Put
catalog.CreateRegion("toyRegion");

// Both toy and toyparts are put in the same region
catalog.Put("toy-101", new Toy(.,.), “toyRegion”);
Catalog.Put("toypart-100", new ToyParts(…), “toyRegion”);

Toy toyObj = (Toy)catalog.Get("toy-101“,"toyRegion");

Access APIs – Tagging Items

• Add Tags to Items

– Tag Search on Default Regions

Tag hotItem = new Tag("hotItem");

catalog.Put("toy-101", new Toy("Puzzle"),
 new Tag[]{hotItem}, “toyRegion”);

catalog.Put("toy-102", new Toy("Bridge"), “toyRegion”);

// From the same or a different client
List<KeyValuePair<string, object>> toys =
 catalog.GetAnyMatchingTag("toyRegion", hotItem);

Usage Pattern – Cache Aside (Explicit Caching)

// Read from Cache
Toy toyObj = (Toy)
 catalog.Get("toy-101");

 Application

C
ac

h
in

g
Se

rv
ic

e

Database

// If Not present in the cache
if (toyObj == null)
{
 // Read from backend..
 toyObj = ReadFromDatabase();

 // Populate Cache
 catalog.Put("toy-101", toyObj);

 return toyObj;
}

Caching Access Layer

Features

API

CRUD Operations (Create, Read, Update

and Delete)

Any Object type

Multiple Client Languages

Concurrency APIs

Async and Batch APIs

Transactions

Query & Continuous Query

Cache Notifications

Eviction

Persistence

Session State (.NET, Java)

IDE support

[1] Tag based queries let you search for objects with a tag. Coherence has Filter support can be used for this
[2] Extensibility in Terracotta is achieved using pre-packaged plug-ins(Terracotta Integration Modules) available as free downloads from Terracotta Forge

Persistence

Read Through

Refresh Ahead

Write Through

Write Behind

Supported Topologies

Partitioned

Replicated

Failover Support (High Availability)

Multiple Backups

Local Caching

Explicit Data Affinity

Embedded Cache

Geo-replicated

Extensibility

Custom Eviction

Custom Persistence

Custom Query

Triggers

Other

Administration & Monitoring

Security

Co-location of logic & data in cache

http://forge.terracotta.org/releases/

IMDB vs. Distributed Caching Platforms (DCPs)

IMDB DCP

Primarily relational store Object store – any form of object

DB-specific representation Application-specific representation

Only SQL query Object/relational query (e.g. Linq, SQL)

Set-oriented access
Key based, Navigational, set-oriented access
(e.g. GET, PUT, simple query)

Centralized Distributed

Performance acceleration Performance, Scale, and Failover

Server deployments Embedded or server deployments

Niche, vertical markets (e.g. Telco) General purpose (e.g. Web, LOB)

e.g. TimesTen, Solid DB, ANTS

e.g. memcacheD, Gemstone, Oracle Coherence,
Gigaspaces, IBM extremeScale, AppFabric Caching
etc..

DCP Players

• Memcached (open source)

• VMWare (Gemstone) Gemfire

• Gigaspaces Extreme Application Platform

• IBM WebSphere Extreme Scale Cache

• Microsoft AppFabric Caching

• Oracle Coherence

• Terracotta's Terracotta Server (open source)

Distributed Caching Platform
Concepts

AppFabric Caching Logical Hierarchy

• Host
– Physical processes hosting AppFabric

Caching instance.

• Named Caches
– Can span across machines

– Defined in the configuration file

• Cache Item
– Key, Payload (Object), Tags, TTL,

Timestamps, Version

• Regions
– Physically co-located Container of

Cache Items

– May be implicit or explicitly created

Regions
Region A

Key Payload Tags

121 xxxx “Toy” “Child”

123 yyyy “Toy” “Chair”..

Machine -> Cache Host -> Named Caches -> Regions -> Cache Items -> Objects

AppFabric
Caching
Service

Named Cache : Product Catalog

Named Cache : Electronics Inventory

AppFabric
Caching
Service

AppFabric
Caching
Service

AppFabric
Caching
Service

Application

Cache2

Cache1

Primary for
K2,V2

K2, V2

Primary for K1,V1

K1, V1

Cache3

Primary for K3,V3

K3, V3

Cache Client2

Scale: Partitioned Cache

Get(K2)

Routing Table

(K2, V2)

Cache Client1

Routing Table

PUT

Using the Routing table client routes
the PUT to cache2 (primary) node

Routing Table Routing Table Routing Table

K
2

, V
2

Operations queue for notifications,
to bring up a new secondary, etc.

Key Mapping

Region Key

"Cust1"

"Cust2"

"Cust33"

"ToyRegion" "Toy101"

"ToyRegion" "Toy102"

"BoxRegion" "Box101"

Partition
(Range of Ids)

0 – 1000

1001 - 2000

…

…

..

 xxx - Maxint

Region
(Name)

Default Region 1

Default Region 2

…

Default Region 256

 ToyRegion

BoxRegion

C
ac

h
e

Se
rv

ic
e

C

ac
h

e
Se

rv
ic

e

C
ac

h
e

Se
rv

ic
e

Region
Name
Hashed into
Region Id

Keys
Bucketized
into Regions

ID Ranges
mapped
to Nodes

Application
(K2, V2)

Cache2

Cache1

Cache3

Primary for (K2,V2)

Scale: Replicated Cache (Synchronous)

K2, V2

Get(K2)

Primary for (K1,V1)

Primary for (K3,V3)

K3, V3 K1, V1 K1, V1 K3, V3 K3, V3 K1, V1

K2, V2
K2, V2

Routing layer

Cache Client1

Routing Table

K
2

, V
2

Using the Routing table client routes
the PUT to cache2 (primary) node

PUT
• Queues the PUT operation
•PUTs locally
•Propagates operation to
 Cache1 and Cache3
•Returns control

Replication
Agent

Application
(K2, V2)

Cache2

Cache1

Cache3

Primary for (K2,V2)

Scale: Replicated Cache (Async)

K2, V2

Get(K2)

Primary for (K1,V1)

Primary for (K3,V3)

K3, V3 K1, V1 K1, V1 K3, V3 K3, V3 K1, V1

K2, V2
K2, V2

Routing layer

Cache Client1

Routing Table

K
2

, V
2

Using the Routing table client routes
the PUT to cache2 (primary) node

PUT
• Queues the PUT operation
•PUTs locally
•Returns control
• Propagates operation to
 Cache1 and Cache3

Replication
Agent

Cache Client

Local Cache

Local Cache
• Local Cache can help speed up access on clients

• Uses notification mechanism to refresh the cache on cache
item changes

Put(K2, v2)

Routing Table

Cache2

Cache1

Primary for K2,V2

K2, V2

Primary for K1,V1

K1, V1

Cache3

Primary for K3,V3

K3, V3

Cache Client

Local Cache
 Routing Table

K2, V2

Get(K2)
Get(K2)

Application
(K2, V2)

Cache2

Cache1

Cache3

Primary for (K2,V2)

Availability

Get(K2)

Primary for (K1,V1)

Primary for (K3,V3)

K3, V3

Cache Client1

Routing Table

K
2

, V
2

Using the Routing table client routes
the PUT to cache2 (primary) node

PUT
• Queues the PUT operation
•PUTs locally
•Propagates operation to
 secondaries (cache1 & cache3)
• Waits for a quorum of acks
• Returns control

Secondary for (K2,V2), (K3,V3)

K2, V2

K1, V1

K3, V3

Secondary for (K1,V1), (K3,V3)

 K3, V3 K1, V1

Secondary for (K1,V1), (K2,V2)

 K1, V1 K2, V2

Cache Client

Routing Table

K2, V2

Replication
Agent

Cache4

Primary for
(K4,V4)

K4, V4

Secondary for

K1, V1 K3, V3

Partition
Manager

Global
Partition Map

Cache2

Cache1

Cache3

Primary for (K2,V2)

Failover

Primary for (K3,V3)

K3, V3

Routing Table

Secondary for

K2, V2

K1, V1

K3, V3

Secondary for

K3, V3 K1, V1

Secondary for

K4, V4 K2, V2

K2, V2

Detects Cache 2 failure.
Notifies PM (on Cache4)

Replication
Agent

Reconfiguration
Agent

Local Partition
Map

Picks Cache1 as the primary for (K2,V2).
Sends messages to the secondary caches,
Cache1 and Cache3. Updates GPM

PM analyzes the info on secondaries of all
primary partitions of Cache2 to elect the
primaries.

Cache1 polls secondaries
(Cache2) to ensure it has the
latest data; otherwise, it will
give up primary ownership

Cache1 initiates reconfiguration.
After reconfig, Cache1 is
primary for (K1, V1) and (K2, V2)

Application

Embedded Cache

• Cache client and server components run as part of the
application process

• Avoids serialization and network costs

• Provides high performance, low latency access

• Guaranteeing locality and load balancing is tricky

• Better suited for replicated caches

Cache Components

K3, V3 K1, V1

K2, V2

Application

Cache Components

K3, V3 K1, V1

K2, V2

Application

Cache Components

K3, V3 K1, V1

K2, V2

Optimistic Version-based Locking

• GetCacheItem returns a version object

• Every update to an object internally increments it's version

• Supply the version obtained along with the Put/Remove

• Put/Remove will succeed only if the passed in version matches
the version in the cache

Version Based Update

Time Client1 Client2 (Different Thread or process)

T0 CacheItem item =
catalog.GetCacheItem(“PlayerRegion”,
”Zune”);

 CacheItem item =
catalog.GetCacheItem(“PlayerRegion”,
 ”Zune”);

T1 ((ZuneObject)item.Object).inventory --; ((ZuneObject)item.Object).inventory--;

T2 catalog.Put(“PlayerRegion”, “Zune”,
 item.Object, item.Version);

T3 catalog.Put(“PlayerRegion”, “Zune”,
 item.Object, item.Version);
// Version mismatch
// Client must retry again

Two clients access the same
item

Both update the item

Second Client gets in first;
put succeeds because item
version matches; atomically

increments the version

First client tries put;
Fails because the versions

don’t match

K1

Pessimistic Locking

 – Take locks on non-existent keys
– Allows you to co-ordinate creating new object

amongst multiple clients

Client1:
GetAndLock ("k1")

Client2:
 GetAndLock ("k1")

Client3:
 Get ("k1")

Regular Get
succeeds

GetAndLock gets
lock handle

 Other GetAndLock
on same item fails

Application

Cache2

Cache1

Primary for

 K2, V2

Primary for

K1, V1

Cache3

Primary for

K3, V3

Scalable Notifications

 Caching Client

Routing Table

Register
Notification for

Key “K3"

Map Keys
to Partition

(say P2)

Poll
Required

Nodes

Nodes Return
List of Changes

LSN Order

Partition: P2

Last LSN: 19

Call Delegate
Store Last LSN

Change Log

Partition P1

1 Add K2

2 Del K32

Change Log

(Partition P2)

18 Del K32

19 Del K43

Change Log

33 Add K1

34 Del K22

Eviction

• Expiry only eviction which
– Evicts expired items alone

– Periodic

– Per partition

• Hard-eviction (Data > Allocated Cache Size)
– Evicts expired items + non-expired items (in LRU order)

– Per request

– Can be turned off

• Memory pressure based eviction
– A thread for detecting memory pressure (polling per second)

– Avoids paging

– Triggers hard-eviction (mentioned above) at 85% system memory
usage and asks for releasing 5% of system memory

Persistence – Cache Through
• Callback for read-through, write-through, write-

behind

• Specified at Named Cache Level

• Read-Through

– Called when item not present in cache

– Callback returns the object/serialized bytes

• Write-Through

– Called when item is put

• Write-Behind

– Writes to cache are queued

– Callback called asynchronously in batches

– Re-tries upon failure

• Bulk Access APIs

Application

Cache2

Cache1

Primary for
K2,V2

Primary for K1,V1

K1, V1

Cache3

Primary for K3,V3

K3, V3

Cache Client2

Read-Through Cache

Get(K2)

Routing Table Routing Table Routing Table

DB

Routing Table

K2, V2 K2, V2

Application

Cache2

Cache1

Primary for
K2,V2

Primary for K1,V1

K1, V1

Cache3

Primary for K3,V3

K3, V3

Cache Client2

Write-Through Cache

Put (K2, V2))

Routing Table Routing Table Routing Table

Routing Table

K2, V2

DB

Application

Cache2

Cache1

Primary for
K2,V2

Primary for K1,V1

K1, V1

Cache3

Primary for K3,V3

K3, V3

Cache Client2

Async Write-Back Cache

Put (K2, V2))

Routing Table Routing Table Routing Table

Routing Table

K2, V2

DB

Async Write Back (Write Behind) Cache

• Specified at Named Cache Level

• Write-Back

– Asynchronously written to disk (e.g. database)

– Physical write done via callbacks

– Writes to cache are queued

– Callback called asynchronously in batches

– Re-tries upon failure

Executing A Query

Cache2

Cache1

Primary Regions

Primary Regions

Toy1, 500

Cache3

Primary Regions

Toy2, 350 Toy3, 400

Cache API

Local Cache

Cache Client

Dispatch Manager

Federated Query Processor

Object Manager

In-memory Data Manager

Query Processor

Object Manager

In-memory Data Manager

Query Processor

Object Manager

In-memory Data Manager

Query Processor

 from toy in catalog<Toy>()
 where toy.ToyPrice > 300
 select toy;

ToyRegion

Toy4, 100

from toy in catalog<Toy>()
where toy.ToyPrice > 300
 select toy;

Executing A Query

Cache2

Cache1

Primary Regions

Primary Regions

Toy1, 500

Cache3

Primary Regions

Toy2, 350 Toy3, 400

Cache API

Local Cache

Cache Client

Dispatch Manager

Federated Query Processor

Object Manager

In-memory Data Manager

Query Processor

Object Manager

In-memory Data Manager

Query Processor

Object Manager

In-memory Data Manager

Query Processor

 from toy in catalog.GetRegion<Toy>(“ToyRegion”)
 where toy.ToyPrice > 300
 select toy;

ToyRegion

Toy4, 100

from toy in catalog.GetRegion<Toy>(“ToyRegion”)
where toy.ToyPrice > 300
select toy;

DCP Architecture

Local Store Components

Microsoft’s AppFabric Caching Architecture

Administration
and Monitoring Cache Monitors

Tools Integration

In-memory Data Manager

Hash, B-trees

DM API

Distributed Manager

Dispatch Manager Distributed Object
Manager

Distributed Components

Failure
Detection

Reliable
Routing

Raw
Transport

Cluster Substrate

Local Partition Map

Replication Agent

Reconfiguration Agent

Routing Table

Common Availability Substrate

Cache API &
 Service Layer

Cache API

Cache Service

Object Manager
Policy Management

Notification Management

Region Management Query Processor

Cache API

Local Cache

Client Layer

Dispatch Manager

Federated Query Processor

Routing Table

Customer & Usage Trends

Cache in Multi-tiered Application

A
p

p
licatio

n
 Lo

gic
W

e
b

 Tie
r

DB1

WF1 WF2 WF3

Que1 Que2 Que3

Csh1 Csh2 Csh3

DB2 DB3

Web1 Web2 Web3

Csh1 Csh2 Csh3

Web4 Web5

D
ata Tie

r

Tier Merging – Co-locating Caches

W
e

b
 Tie

r

WF1 WF2 WF3

Que1 Que2 Que3

Csh1 Csh2 Csh3

App Server App Server App Server

A
p

p
licatio

n

Lo
gic

DB1 DB2 DB3

Web1 Web2 Web3

Csh1 Csh2 Csh3

Web4

Csh4

Web5

Csh5

Data/partition aware Routing

D
ata Tie

r

Hotel Search

DB1

Search Search Search

Que1 Que2 Que3

Hotel
Data

Hotel
Data

Hotel
Data

DB2 DB3

App
Server

App
Server

App
Server

Web1 Web2 Web3

Csh1 Csh2 Csh3

Web4

Csh4

Web5

Csh5

D
ata Tie

r
W

e
b

 Tie
r

A
p

p
licatio

n

Lo
gic

New York London Paris

City aware Routing

Find Hotels in City = “Paris”

Find Hotels in City = “Paris”

Cloud Applications and Caching

• Application (and cache) on-premises and Data

on Cloud

• Application and Data on Cloud

– Cache as a service

– Cache co-located with App

• Application on Cloud and Data on-premises

App on-premises; Data on Cloud

… ASP.Net Web
Tier

 Application Application Application

 Caching Access
Layer

 Caching Access Layer Caching Access
Layer

C
ac

h
in

g
W

o
rk

er
 R

o
le

 C

ac
h

in
g

 S
er

vi
ce

C
ac

h
in

g
 S

er
vi

ce

C
ac

h
in

g
 S

er
vi

ce

Application &
Caching

deployed On-
premise

Data on SQL Cloud

App on Cloud; Data on Cloud; Cache on a VM

…
Web servers

 Application Application Application

 Caching Access
Layer

 Caching Access Layer Caching Access
Layer

C
ac

h
in

g
W

o
rk

er
 R

o
le

 C

ac
h

in
g

 S
er

ve
r

C
ac

h
in

g
 S

er
ve

r

Application &
Caching on Cloud

Data on Cloud

Caching VM C
ac

h
in

g
 S

er
ve

r

App on Cloud; Data on Cloud; Cache as a Service

… Web servers

 Application Application Application

 Caching Access
Layer

 Caching Access Layer Caching Access
Layer

Application &
Caching on

Windows Cloud

Data on Cloud

Caching Service

C
ac

h
in

g
W

o
rk

er
 R

o
le

 C

ac
h

in
g

 S
er

vi
ce

C
ac

h
in

g
 S

er
vi

ce

C
ac

h
in

g
 S

er
vi

ce

App on Cloud; Data on-premise

… Web servers

 Application Application Application

 Caching Access
Layer

 Caching Access Layer Caching Access
Layer

C
ac

h
in

g
W

o
rk

er
 R

o
le

 C

ac
h

in
g

 S
er

vi
ce

C
ac

h
in

g
 S

er
vi

ce

Application &
Caching on Cloud

Caching VM

C
ac

h
in

g
 S

er
vi

ce

Data on-premises

C
lo

u
d

 –
 O

n
-p

re
m

is
e

s

C
o

n
n

e
ct

iv
it

y

DCP Vendors

• Memcached (open source)

• VMWare (Gemstone) Gemfire

• Gigaspaces Extreme Application Platform

• IBM WebSphere Extreme Scale Cache

• Microsoft AppFabric Caching

• Oracle Coherence

• Terracotta's Terracotta Server (open source)

Distributed Caching Hard Problems

• Large caches

• Extreme Low Latency

• Impact of NVRAM technologies

– PCM?

• Cache as the Truth?

• Durability?, Persistence?

• DBMS Capabilities?

Q/A?

